Sodium cholate-enhanced polymeric micelle system for tumor-targeting delivery of paclitaxel
نویسندگان
چکیده
Purpose Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of paclitaxel (PTX). High antitumor efficacy and low toxicity require that PTX mainly accumulated in tumors with little drug exposure to normal tissues. However, many PTX-loaded micelle formulations suffer from low stability, fast drug release, and lack of tumor-targeting capability in the circulation. To overcome these challenges, we developed a micellar formulation that consists of sodium cholate (NaC) and monomethoxy poly (ethylene glycol)-block-poly (d,l-lactide) (mPEG-PDLLA). Methods PTX-loaded NaC-mPEG-PDLLA micelles (PTX-CMs) and PTX-loaded mPEG-PDLLA micelles (PTX-Ms) were formulated, and their characteristics, particle size, surface morphology, release behavior in vitro, pharmacokinetics and in vivo biodistributions were researched. In vitro and in vivo tumor inhibition effects were systematically investigated. Furthermore, the hemolysis and acute toxicity of PTX-CMs were also evaluated. Results The size of PTX-CMs was 53.61±0.75 nm and the ζ-potential was -19.73±0.68 mV. PTX was released much slower from PTX-CMs than PTX-Ms in vitro. Compared with PTX-Ms, the cellular uptake of PTX-CMs was significantly reduced in macrophages and significantly increased in human cancer cells, and therefore, PTX-CMs showed strong growth inhibitory effects on human cancer cells. In vivo, the plasma AUC0-t of PTX-CMs was 1.8-fold higher than that of PTX-Ms, and 5.2-fold higher than that of Taxol. The biodistribution study indicated that more PTX-CMs were accumulated in tumor than PTX-Ms and Taxol. Furthermore, the significant antitumor efficacy of PTX-CMs was observed in mice bearing BEL-7402 hepatocellular carcinoma and A549 lung carcinoma. Results from drug safety assessment studies including acute toxicity and hemolysis test revealed that the PTX-CMs were safe for in vivo applications. Conclusion These results strongly revealed that NaC-mPEG-PDLLA micelles can tumor-target delivery of PTX and enhance drug penetration in tumor, suggesting that NaC-mPEG-PDLLA micelles are promising nanocarrier systems for anticancer drugs delivery.
منابع مشابه
Polymeric micellar delivery systems in oncology.
The purpose of drug delivery systems in cancer chemotherapy is to achieve selective delivery of anti-cancer agents to cancer tissue at an effective concentrations for the appropriate duration of time, so that we may be able to reduce the adverse effects of a drug and simultaneously enhance the anti-tumor effect. Polymeric micelles were expected to increase the accumulation of drugs in tumor tis...
متن کاملClinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors
Please cite this article in press as: Yokoya Diagnosis of Solid Tumors, Journal of Exper Polymeric micelles are assemblies of synthetic polymers and have been studied and developed as drug carriers for targeting solid tumors. Physicochemical characters and medical advantages of the polymeric micelle carrier systems are summarized, followed by an explanation of their recent application for contr...
متن کامل[Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].
We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1...
متن کاملExploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies
As versatile drug delivery systems, polymeric micelles have demonstrated particular strength in solubilizing hydrophobic anticancer drugs while eliminating the use of toxic organic solvents and surfactants. However, the true promise of polymeric micelles as drug carriers for cancer therapy resides in their potential ability to preferentially elevate drug exposure in the tumor and achieve enhanc...
متن کاملPoly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release
We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95...
متن کامل